Hierarchical amino acid utilization and its influence on fermentation dynamics: rifamycin B fermentation using Amycolatopsis mediterranei S699, a case study

نویسندگان

  • Prashant M Bapat
  • Debasish Das
  • Sujata V Sohoni
  • Pramod P Wangikar
چکیده

BACKGROUND Industrial fermentation typically uses complex nitrogen substrates which consist of mixture of amino acids. The uptake of amino acids is known to be mediated by several amino acid transporters with certain preferences. However, models to predict this preferential uptake are not available. We present the stoichiometry for the utilization of amino acids as a sole carbon and nitrogen substrate or along with glucose as an additional carbon source. In the former case, the excess nitrogen provided by the amino acids is excreted by the organism in the form of ammonia. We have developed a cybernetic model to predict the sequence and kinetics of uptake of amino acids. The model is based on the assumption that the growth on a specific substrate is dependent on key enzyme(s) responsible for the uptake and assimilation of the substrates. These enzymes may be regulated by mechanisms of nitrogen catabolite repression. The model hypothesizes that the organism is an optimal strategist and invests resources for the uptake of a substrate that are proportional to the returns. RESULTS Stoichiometric coefficients and kinetic parameters of the model were estimated experimentally for Amycolatopsis mediterranei S699, a rifamycin B overproducer. The model was then used to predict the uptake kinetics in a medium containing cas amino acids. In contrast to the other amino acids, the uptake of proline was not affected by the carbon or nitrogen catabolite repression in this strain. The model accurately predicted simultaneous uptake of amino acids at low cas concentrations and sequential uptake at high cas concentrations. The simulated profile of the key enzymes implies the presence of specific transporters for small groups of amino acids. CONCLUSION The work demonstrates utility of the cybernetic model in predicting the sequence and kinetics of amino acid uptake in a case study involving Amycolatopsis mediterranei, an industrially important organism. This work also throws some light on amino acid transporters and their regulation in A. mediterranei. Further, cybernetic model based experimental strategy unravels formation and utilization of ammonia as well as its inhibitory role during amino acid uptake. Our results have implications for model based optimization and monitoring of other industrial fermentation processes involving complex nitrogen substrate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whole genome sequence of the rifamycin B-producing strain Amycolatopsis mediterranei S699.

Amycolatopsis mediterranei S699 is an actinomycete that produces an important antibiotic, rifamycin B. Semisynthetic derivatives of rifamycin B are used for the treatment of tuberculosis, leprosy, and AIDS-related mycobacterial infections. Here, we report the complete genome sequence (10.2 Mb) of A. mediterranei S699, with 9,575 predicted coding sequences.

متن کامل

Phase shifts in the stoichiometry of rifamycin B fermentation and correlation with the trends in the parameters measured online.

Antibiotic fermentation processes are raw material cost intensive and the profitability is greatly dependent on the product yield per unit substrate consumed. In order to reduce costs, industrial processes use organic nitrogen substrates (ONS) such as corn steep liquor and yeast extract. Thus, although the stoichiometric analysis is the first logical step in process development, it is often dif...

متن کامل

Microbial Cell Factories

Background: Industrial fermentation typically uses complex nitrogen substrates which consist of mixture of amino acids. The uptake of amino acids is known to be mediated by several amino acid transporters with certain preferences. However, models to predict this preferential uptake are not available. We present the stoichiometry for the utilization of amino acids as a sole carbon and nitrogen s...

متن کامل

Draft Genome Sequence of the Rifamycin Producer Amycolatopsis rifamycinica DSM 46095

Amycolatopsis rifamycinica DSM 46095 is an actinobacterium that produces rifamycin SV, an antibiotic used against Mycobacterium tuberculosis. Here, we present the draft genome of DSM 46095, which harbors a novel rifamycin polyketide biosynthetic gene cluster (rif PKS) that differed by 10% in nucleotide sequence from the already reported rif PKS cluster of Amycolatopsis mediterranei S699.

متن کامل

Metabolism of Barbital by Streptomyces Mediterranei.

The metabolism of barbital in cultures of Streptomyces mediterranei was studied. Small quantities were transformed during the fermentation. Four compounds were isolated and identified as 5-ethyldialuric acid, 5-ethylbarbituric acid, 5-(beta-hydroxyethyl)-5-ethylbarbituric acid, and diethylmalonic acid monoureid. The influence of these compounds on the production of rifamycin was of minor import...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbial Cell Factories

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2006